Neural Network Adaptive Autotuner

Alireza Rahrooh, Bahman Motlagh
University of Central Florida

Abstract

It is critical that modern control theory techniques be integrated into assignments which involve the application of basic concepts in engineering technology to prepare students for the next millennium. The adaptive neural network discussed in this paper can be viewed as an appropriate use of these modern techniques in engineering technology curriculum. Adaptive tuning of PID controller gains in case of plant parameter variations is of great importance. There are many approaches available for PID autotuning. In this paper the PID controller gains are adaptively changed using a neural network approach. The neural network tuner is incorporated in the control system to adapt the PID gains to changing system parameters. The neural network architecture employed is a multilayer perceptron. A computer simulation is conducted to show the tracking behavior of the controller in the case of plant parameter variations and set point changes.

Introduction

Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in the industry. This wide applicability is due to their simple structure and robust behavior. The proper choice of the PID gains is essential for a satisfactory performance. Many attempts for tuning these controllers are mainly achieved by off-line tests performed on the plant. There are also other more modern autotuners available. The controller parameters, regardless of their method of tuning, must be retuned after a change of plant parameters due to changing operating points, aging, etc. Therefore, the design of an autotuner that adaptively changes the controller gains could be of practical interest.

In this paper, neural networks are utilized to design a tuner that changes the PID gains adaptively. Neutral networks have been previously used as adaptive controllers to control unknown plants. The main idea developed in this paper is to use neural networks as adaptive autotuners rather than as an adaptive controller. Simulation results are presented to show the performance of this autotuner in the case of plant parameter variations and set point changes.

The Neural Network Structure

A neural network which is widely used in the control applications is the feedforward network with two hidden layers. The learning algorithm used in the present network is backpropagation. A problem with this network is its rather long learning time. In order to reduce this time, a linear neuron is used in the outer layer and sigmoid neurons are used in hidden layers, respectively. Figure 1 shows such a network (S is sigmoid neuron, and L is linear neuron). The required learning time is considerably reduced by accelerating the convergence rate and reducing the initial value of the norm of the error vector. To further improve the performance of the network the momentum algorithm is
used in the network structure. This will smoothen the behavior of the network and will prepare it to tackle the effects of error bursting.

The expression for updating the matrix of weights in the neural network with the momentum algorithm is as follows:

\[w_{k+1} = w_k + 2\beta e_k x_k + \alpha(w_k - w_{k-1}) \]

(1)

where \(w_k \) is the matrix of weights at the kth iteration, \(e_k \) is the error backpropagated, \(x_k \) is the input to the network, \(\beta \) is the learning factor, and \(\alpha \) is the momentum factor.

\[u_k = T k_p e_k + T k_i z_k + T k_d (e_k - e_{k-1}) \]

(2)

where \(e_k \) is the error between the output \(y_k \) and the set point \(r \), \(z_k \) is the digital integral of error given by:

\[z_k = z_{k-1} + e_k \]

(3)

\(T \) is the sampling time, and \(k_p, k_i, k_d \) are the proportional, integral, and derivative gains, respectively. Each of the adaptive gains shown in Figure 2 can be treated as a single input single output modified feedforward network.
In the backpropagation structure the desired output of the network is used to form the required error for backpropagation. However, it is noted that in the present application the only desired value available is the desired output of the plant. Therefore, in order to provide an error for backpropagation in the networks, G(s) is assumed as a layer of the network. This will allow the error in the output of the system y(t), to be the backpropagated error. It should be clear that this additional layer would not be updated during the weight updating phase of the network. Partial derivative of the error at the output of the plant with respect to weights, i.e., \(\partial e_{op}/\partial w \), must be used in the backpropagation algorithm. The expressions for this algorithm are based on the partial derivation of the error at the output of neural network \(\partial e_{on}/\partial w \). The following relationship solves the problem by relating these two terms:

\[
\frac{\partial e_{op}}{\partial w} = \frac{\partial y}{\partial y_n} \ast \frac{\partial e_{on}}{\partial w}
\]

where y is the output of the plant and \(y_n \) is the output of the neural network. Since we want to control an unknown plant, \(\frac{\partial y}{\partial y_n} \) is not available, therefore, the following algorithm can be used to obtain an approximate value:

\[
\frac{\partial y}{\partial y_n} = \frac{(y_k - y_{k-1})}{(y_{nk} - y_{nk-1})}
\]

Simulation

A simulation study is conducted to illustrate the utility of the proposed technique. The results show an excellent tracking behavior of the controller in the case of plant parameter variations and set point changes. In the following examples, the effectiveness of the proposed structure can be seen.

Example 1. This example shows the performance of the control system when the plant is a first order plant with transfer function G(s) = \(\frac{1}{s+1} \). Sampling time is 0.1 sec and the neural networks have four neurons in each of their hidden layers. The actual and desired outputs of the plant are shown in Figure 3. At t= 10 sec., set point is changed and the output of the plant tracks it. At t=20 sec., the transfer function of the plant is changed to G(s) = \(\frac{2}{s+3} \). It can be seen in Figure 3 that the neural part adaptively changes the gain for the new plant after a few iterations.

Example 2. In this example we want to control a liquid mixing process which can be represented by a second order transfer function G(s) = \(\frac{5}{s^2+4s+20} \). Figure 4 shows the input (desired output) and the actual output of the process. At t=20 sec., the transfer function of the process is changed and it can be seen from Figure 4 that a proper tracking occurs.

Conclusion

It has been demonstrated that that using advanced concepts from modern control theory can improve the tuning of PID controller. Furthermore, it is essential that some of these techniques be incorporated into engineering technology curriculum to prepare students for 21st century technology.
References

ALIREZA RAHROOH

Alireza Rahrooh is Assistant Professor of Engineering Technology at the University of Central Florida. He received his B.S., M.S., and Ph.D. in Electrical Engineering from the University of Akron. Dr. Rahrooh was previously on the faculty at the Penn State University at Harrisburg. He has many papers published in different area of Electrical Engineering. He is a reviewer for Journal of ET, and a member of ASEE, IEEE, ISCA, and IASTED.

BAHMAN MOTLAGH

Bahman Motlagh is Assistant Professor of Engineering Technology at the University of Central Florida. He received his B.S. in Engineering from Istanbul Academy of Sciences, M.S. and Ph.D. in Computer Engineering from University of Central Florida. He is a member of IEEE, ASEE, and Eta Kappa Nu.